

Global Hydrology Resource Center DAAC User Working Group National Space Science and Technology Center UAH Cramer Research Hall, Room 2096 25-26 September 2014

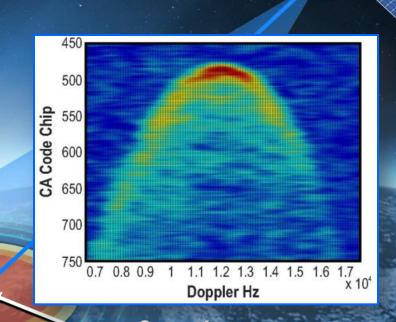
The Cyclone Global Navigation System (CYGNSS) Earth Venture Mission

Chris Ruf, CYGNSS Principal Investigator
Professor of Atmospheric, Oceanic and Space Sciences
Director, Space Physics Research Laboratory
University of Michigan
Ann Arbor, MI

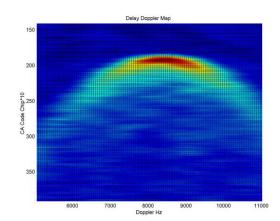
CYGNSS Mission Overview

- The Cyclone Global Navigation Satellite System (CYGNSS) is the NASA Earth Venture Mission selected in June 2012
- CYGNSS consists of 8 separate microsatellites in LEO, each with 4 GPS bi-static radar receivers
 - Mission lead/Science Ops (University of Michigan)
 - Spacecraft/Integration/Mission Ops (Southwest Research Institute)
 - Science payload provider (Surrey Satellite Technology)
- The driving science objective is rapid sampling of ocean surface winds in the inner core of tropical cyclones

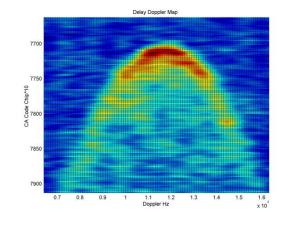
CYGNSS Science Goals and Objectives


- CYGNSS Science Goal
 - Understand the coupling between ocean surface properties, moist atmospheric thermodynamics, radiation, and convective dynamics in the inner core of a tropical cyclone (TC)
- CYGNSS Objectives
 - Measure ocean surface wind speed in all precipitating conditions, including those experienced in the TC eyewall
 - Measure ocean surface wind speed in the TC inner core with sufficient frequency to resolve genesis and rapid intensification
- CYGNSS uses a new measurement technique and a new satellite mission architecture
 - Measure the distortion of GPS signals scattered from the ocean surface to determine ocean surface roughness and wind speed
 - Use small satellites so many can be flown to improve sampling

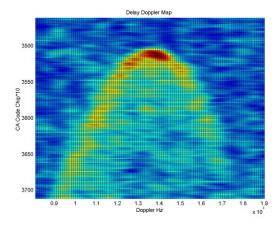
Direct Signal CYGNSS Observatory



Specular Point



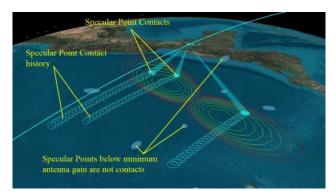
Spaceborne Empirical Demonstration of Ocean Wind Speed Retrievals by GNSS-R

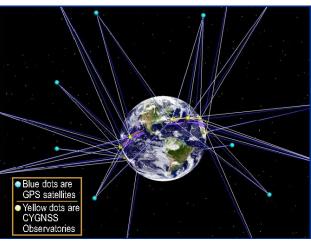

GNSS-R instrument (early version of CYGNSS science payload) deployed on UK-DMC-1 mission, launch 2003

Winds ~ 2 m/s

Winds 7 m/s

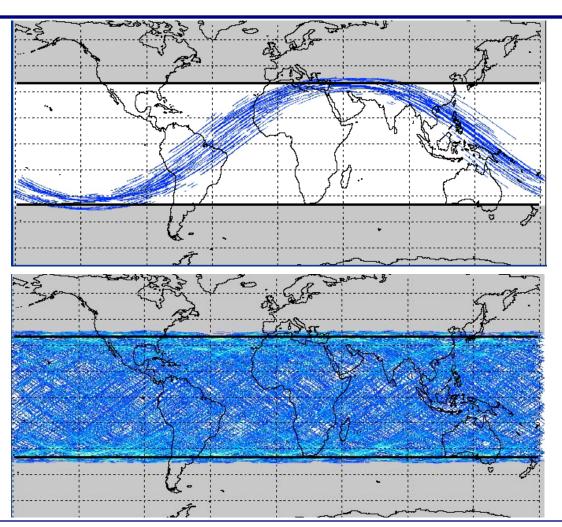
Winds 10 m/s



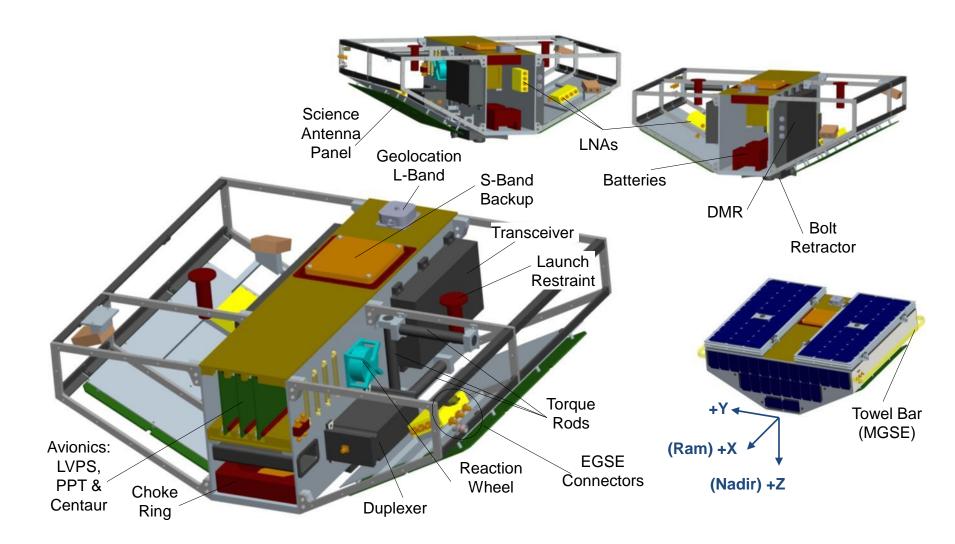


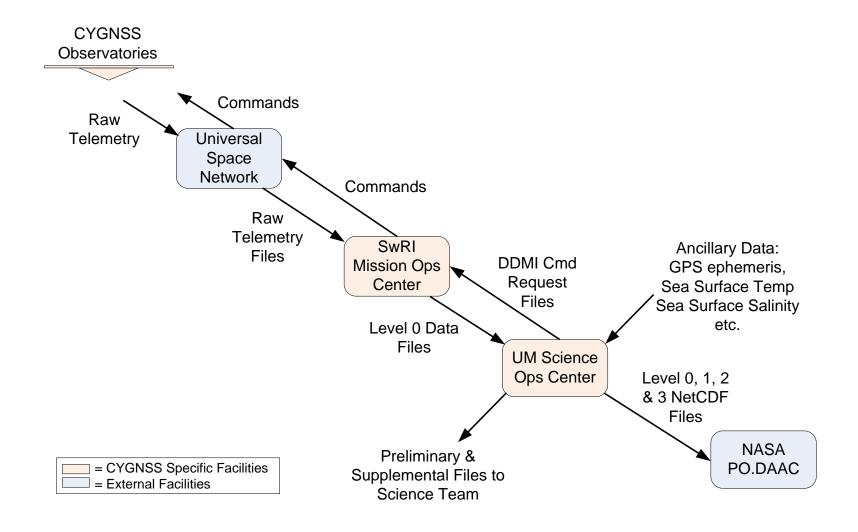


CYGNSS Spatial Sampling



CYGNSS Earth Coverage


- 90 min (one orbit) coverage showing all specular reflection contacts by each of 8 s/c
- 24 hr coverage provides nearly gap free spatial sampling within +/- 35° orbit inclination


CYGNSS Observatory (exploded view)

Observatory Separation

CYGNSS Ground Segment

Science Data Products (1 of 3)

- Level 0 through Level 3 science data products are stored in netCDF format using Climate and Forecast (CF) metadata conventions
- Data latency from TM downlink to PO.DAAC is six days maximum

Science Data Products (2 of 3)

Level	Description
0	 Unprocessed DDMs and metadata Contains all information from the raw science TM files Raw counts, not engineering units DDMs still compressed File granularity: ~48 hours, single observatory
1a	 Decompressed, calibrated DDMs, power in Watts Complete metadata converted to engineering units File granularity: one UTC day, entire constellation
1b	 Calibrated DDMs, bistatic radar cross section Precision geolocated specular points Complete metadata Uncertainty File granularity: one UTC day, entire constellation

Science Data Products (3 of 3)

Level	Description
2 a	 Time tagged wind speed of a 25 x 25 km cell centered on the specular point Complete metadata Uncertainty File granularity: one UTC day, entire constellation
2b	 Time tagged mean square slope of a 25 x 25 km cell centered on the specular point Complete metadata Uncertainty File granularity: one UTC day, entire constellation
3a	 Wind Speed, gridded in time and space (¼° latitude, longitude grid) Number of wind readings per cell File granularity: three UTC hours, entire constellation
3b	 Wind Speed optimized for observing system experiment data assimilation, variable grid size

Project Schedule

Date	Milestone
Dec 2012	Project start
Jun 2013	System Requirements Defined
Jan 2014	Overall System Design Completed
Jan 2015	Detailed Design Completed
Mar 2015 – Jun 2016	Build, Assemble & Test the Spacecraft
Jul-Aug 2016	Integrate Spacecraft and Launch Vehicle
Oct 2016	LAUNCH
Oct 2016 – Mar 2017	Spacecraft commissioning, Science payload and algorithm calibration and validation
Oct 2016 – Sep 2018	On-orbit Mission Lifetime
After Sep 2018	Extended mission

